
Case Study:

DIAN Manual QC Uploader
John Paulett

jpaulett@wustl.edu

June 30, 2010

Overview

Case study on using the XNAT REST API to

import externally-managed data into XNAT

2

Dominantly Inherited Alzheimer's

Network (DIAN)

• Multi-center study storing data in the CNDA

• Mayo has existing system for performing MR

Quality Control (QC)

• QC results must be present in the CNDA

3

Mayo Export

• QC data exportable in 2 Comma Separated

Value (CSV) files

– First file has session-level QC metrics (e.g.

overall pass, payable)

– Second file has scan-level QC metrics (e.g. scan

pass, head coverage, head motion)

4

Session-Level CSV

patid,sdate,field,coil,pass,quarantine,rescan,pay_site,initials,
comments

000101_MR1,20090126,3,HeadMatrix,1,1,0,1,gmp01,""

5

Scan-Level CSV

patid,sdate,seriesnumber,seriesdescription,in_bgr,in_flow,in_oth
er,wrap,headcoverage,susceptibility,head_motion,ip_motion,marker
,pass,comments

000101_MR1,20090126,9,"mIP_Images(SW)",0,0,0,0,0,-1,-1,-1,0,1,"“
000101_MR1,20090126,8,"Pha_Images",0,0,0,0,0,-1,-1,-1,0,1,"“
000101_MR1,20090126,7,"Mag_Images",0,1,0,0,0,-1,-1,-1,0,1,"“
000101_MR1,20090126,6,"Axial T2-FLAIR",0,0,0,0,0,0,-1,0,0,1,"“
000101_MR1,20090126,5,"MPRAGE GRAPPA2
repeat",1,0,0,0,0,,,,0,1,"“
000101_MR1,20090126,4,"MPRAGE GRAPPA2
repeat",1,0,0,0,0,,,,0,1,"“
000101_MR1,20090126,3,"MPRAGE GRAPPA2",1,0,0,0,0,,,,0,1,"“
000101_MR1,20090126,2,"MPRAGE GRAPPA2",1,0,0,0,0,,,,0,1,""

6

Development Process

• Added “Manual QC” image assessor to

xnat.xsd

• Built command line tool in Groovy language

that parses CSV files, builds Manual QC XML,

and uploads XML to XNAT’s REST API

7

xnat:QCManualAssessment

• Needed for DIAN’s MR & PET QC

• Modeled on DIAN QC & several additional

Quality Control projects

• Extension of xnat:imageAssessorData

– Generic top-level element with unbounded list of

modality-specific scan-level assessors

8

9

Upload Process

for each row in the session-level file

– search for the Subject & Project using the

Session ID via the REST API

– find the session’s scans in the scan-level file

– build the QCManualAssessment XML

– HTTP PUT the XML to the REST API

10

Get Subject ID & Project

HTTP GET:

/REST/experiments

?format=xml

&xsiType=xnat:mrSessionData

&project=DIAN_*

&label=<Session ID>

&column=ID,subject_ID,label,project,date

11

Put Assessment

HTTP PUT Assessor XML to:

REST/projects/<project ID>

/subjects/<subject ID>

/experiments/<session ID>

/assessors/<generated assessor ID>

12

<?xml version="1.0"?>

<xnat:QCManualAssessment

ID='0000001_v00_mr_mQC_2010-03-29'

project='DIAN_011' >

<xnat:date>2010-03-29</xnat:date>

<xnat:imageSession_ID>CNDA_E000024</xnat:imageSession_ID>

<xnat:scans>

<xnat:scan xsi:type='xnat:mrQcScanData'>

<xnat:imageScan_ID>10</xnat:imageScan_ID>

<xnat:coverage>0</xnat:coverage>

<xnat:pass>1</xnat:pass>

…

</xnat:scan>

…

</xnat:scans>

<xnat:pass>1</xnat:pass>

<xnat:payable>1</xnat:payable>

</xnat:QCManualAssessment>

13

Upload Tool

nrg.github.com/dian-qc-uploader/

Written in Groovy

Command line tool takes username, password,

server, and file names as arguments

14

Upload Tool

$ java -jar dian-qc-uploader-0.4.jar -s
https://cnda.wustl.edu -u admin -p admin scanqc.csv
sessionqc.csv

2010-04-22 10:02:42,830 INFO UploadController -
Processing 00001_v00_mr

2010-04-22 10:02:44,231 INFO UploadController -
Processing 00002_v00_mr

15

16

Challenges

• Separating generalizable schema from DIAN-

specific model

• CSV files lacked Subject & Project, requiring

search before upload

• Subject IDs out of sync after ID format

change

17

“Take Away” Points

• Errors from a single session should not

prevent other sessions from being uploaded

• Logging

– Progress & Errors to standard output

– Debug info to log file

• Unit testing quickly isolates regressions

• Modular design (even in “simple script”)

makes inevitable changes less hacky

18

Using Groovy

Pros

– Use familiar Java APIs and libraries

– Lacks Java’s verbosity, while still readable by

Java developers

– Builder pattern makes XML creation very easy

Cons

– IDE support is still maturing

– Documentation & community are still small

19

Alternative Languages

Criteria

– CSV parsing, XML generation, HTTP client

• Python (PyXNAT)

• Clojure (xnat4clj)

• Java (xnat-beans.jar)

20

Questions?

21

22

