xnatpy tutorial

June 10, 2016

1 xnatpy: a pythonic feeling interface to XNAT

xnatpy attempts to expose objects in XNAT as native feeling Python objects. The objects reflect the
state of XNAT and changes to the objects automatically update the server.

To facilitate this xnatpy scans the server xnat.xsd and creates a Python class structure to mimic
this is well as possible.

Current features: * automatic generate of most data structures from the xnat.xsd * easy explo-
ration of data * easy getting/setting of custom variables * easy downloading/uploading of data *
using the prearchive * the import service

Missing features (aka my TODO list): * good support for the creation of objects * good support
for searches

1.0.1 Some imports and helper code used later on

In [1]: import os
import random

1.1 getting started

First we need to set up an xnatpy session. The session scans the xnat.xsd, creates classes, logs in
into XNAT, and keeps the connection alive using a hearbeat.

In [2]: import xnat
session = xnat.connect ('https://central.xnat.org', user='nosetests', passwc

[INFO] Retrieving schema from https://central.xnat.org/schemas/xnat/xnat.xsd

To save your login you set up a .netrc file with the correct information about the target host. A
simple example of a .netrc file can be found at http://www.mavet ju.org/unix/netrc.php.
It is possible to set the login information on connect without using a netrc file.

In [3]: xnat.connect?
The session is the main entry point for the module. It exposes part of the archive as objects.

In [4]: sandbox = session.projects['nosetests']
print (sandbox)

http://www.mavetju.org/unix/netrc.php

<ProjectData nosetests>

In [5]: sandbox.description
Out[5]: 'Random_project_description_89'
In [6]: new_description = 'Random_project_description_{}'.format (random.randint (0,

print ('Changing description to: {}'.format (new_description))
sandbox.description = new_description

Changing description to: Random_project_description_36

In [7]: sandbox.description
Out[7]: 'Random_project_description_36"'

In [8]: # Get a list of the subjects
sandbox.subjects

Out[8]: <XNATListing (CENTRAL_S04325, 5f45e50ffe5311e49e3fa8206633b88a): <SubjectDs

Note that the entries are in the form (CENTRAL_S01824, custom_label):
<SubjectData CENTRAL_S01824>. This does not mean that the key is (CENTRAL_S01824,
custom_label), but that both the keys CENTRAL_S01824 and custom_label can be used
for lookup. The first key is always the XNAT internal id, the second key is defined as: * project:
the name * subject: the label * experiment: the label * scan: the scantype * resource: label * file:
filename

In [9]: subject = sandbox.subjects|['bla_ subject']

In [10]: print ('Before change:"'")
print ('Gender: {}'.format (subject.demographics.gender))
print ('Initials: {}'.format (subject.initials))

Change gender and initials. Flip them between male and female and JC anc
subject.demographics.gender = 'female' if subject.demographics.gender ==
subject.initials = 'JC' if subject.initials == 'PI' else 'PI'

print ('After change:')
print ('Gender: {}'.format (subject.demographics.gender))
print ('"Initials: {}'.format (subject.initials))

Before change:
Gender: female
Initials: PI
After change:
Gender: male
Initials: JC

There is some basic value checking before assignment are carried out. It uses the xsd directives

when available. For example:

In [11]: subject.demographics.gender = 'martian'

ValueError

Traceback

<ipython-input-11-ef509675a021> in <module> ()

-———> 1 subject.demographics.gender =

'martian'

/tmp/tmp9LFxKr_generated_xnat.py in gender (self, wvalue)

6971 # Restrictions for wvalue

6972 if value not in ["male", "female", "other", "unknown",
-> 6973 raise ValueError ('gender has to be one of: "male",

6974

6975 # Generate automatically, type: xs:string

ValueError: gender has to be one of: "male", "female", "other",

1.2 Custom Variables

In xnatpy custom variables are exposed as a simple mapping type that is very similar to a dictio-

nary.

In [12]: print (subject.fields)

<VariableMap {u'test_field': u'l337'}>

In [13]: # Add something
subject.fields['test_field'] = 42
print (subject.fields)

<VariableMap {u'test_field': u'42'}>

In [14]: subject.fields['test_field']

Out[1l4]: u'42"

Note that custom variables are always stored as string in the database. So the value is always
casted to a string. Also the length of a value is limited because they are passed on the requested

url.

(most recent call last)

"Mll, llFl
"female'

"unknown",

The custom variables are by default not visible in the UlI, there are special settings in the UI to
make them appear. Defined variables in the Ul that are not set, are just not appearing in the fields
dictionary.

To avoid KeyError, it would be best to use subject . fields.get ('field_name') which
returns None when not available.

1.2.1 Downloading stuff

Downloading with xnatpy is fairly simple. Most objects that are downloadable have a . download
method. There is also a download_dir method that downloads the zip and unpacks it to the
target directory.

In [15]: download_ dir = os.path.expanduser ('~/xnatpy_temp')
print ('Using {} as download directory'.format (download_dir))
if not os.path.exists (download_dir):
os.makedirs (download_dir)
sandbox.subjects['515502d2da9111df848d001c2304eldf'] .download_dir (downloac

Using /home/hachterberg/xnatpy_temp as download directory
Downloaded subject to /home/hachterberg/xnatpy_temp/515502d2da9111df848d001c2304elc«

1.2.2 Close the session!

In [16]: # Don't forget to disconnect to close cleanly and clean up temporary thinc
session.disconnect ()

1.3 Context operator

It is also possible to use xnatpy in a context, which guarantees clean closure of the connections etc.

In []: with xnat.connect ('https://central.xnat.org', user='nosetests', password='r
print ('Nosetests project description: {}'.format (session.projects]['nose

Here the session will be closed properly, even if there were exceptions i

1.4 Ideas for the future

Currently I am thinking on two different additions and how to implement that best. * Creation of
new objects * XNAT searches

This illustrates my current ideas, but these are not implemented yet. If you have an opinion
about this, let me know!

Object creation xnat.SubjectData(parent=projectA, initials="X") or alternatively pro-
jectA.subjects[’subjectX’] = xnat.SubjectData(initials="X")

Searches The idea is to create something similar to SQLAIchemy

xnat.MrSessionData.query(session).filter(xnat. MrSessionData.age > 65, xnat.MrSessionData.age
<= 80).all()

	xnatpy: a pythonic feeling interface to XNAT
	Some imports and helper code used later on
	getting started
	Custom Variables
	Downloading stuff
	Close the session!

	Context operator
	Ideas for the future

